Sulfur Dioxide Accelerates the Heterogeneous Oxidation Rate of Organic Aerosol by Hydroxyl Radicals Nicole K. Richards-Henderson, [†] Allen H. Goldstein, [‡] and Kevin R. Wilson*, [†] # Supporting Information **ABSTRACT:** There remains considerable uncertainty in how anthropogenic gas phase emissions alter the oxidative aging of organic aerosols in the troposphere. Here we observe a 10-20 fold acceleration in the effective heterogeneous OH oxidation rate of organic aerosol in the presence of SO_2 . This acceleration originates from the radical chain reactions propagated by alkoxy radicals, which are formed efficiently inside the particle by the reaction of peroxy radicals with SO_2 . As the OH approaches atmospheric concentrations, the radical chain length increases, transforming the aerosol at rates predicted to be up to 10 times the OH-aerosol collision frequency. Model predictions, constrained by experiments over orders of magnitude changes in [OH] and $[SO_2]$, suggest that in polluted regions the heterogeneous processing of organic aerosols by OH ($[SO_2] \ge 40$ ppb) occur on similar time scales as analogous gasphase oxidation reactions. These results provide evidence for a previously unidentified mechanism by which organic aerosol oxidation is enhanced by anthropogenic gas phase emissions. # INTRODUCTION Despite their small number density, organic aerosols (OA) are important constituents ^{1,2} of the troposphere contributing to large scale impacts on climate, ³ air pollution, and human health. ⁴ Accurate predictions of these impacts require a detailed understanding of all relevant multiphase chemical reaction mechanisms and time scales. Modeling the transformation chemistry of OA is challenging due in part to the large number of chemical species in an aerosol and the complex and potentially unidentified feedbacks between gas and particle phase chemistry, which include heterogeneous and photochemical reactions, condensed phase reactions, and the condensation of low-volatility gas phase reaction products. Currently, many models under-predict the daily evolution of OA suggesting either unknown oxidation mechanisms or unknown gas-phase precursors. ⁵ Secondary organic aerosol (SOA) is observed to form rapidly within hours after sunrise in contrast to the time scale of days for known heterogeneous oxidation reactions, whose rate is limited by the OH-particle collision frequency. Recently, we reported evidence that free radical chain reactions lead to rapid acceleration of the effective heterogeneous oxidation rate of hydroxyl radicals (OH) in the presence of NO.⁶ Here we investigate whether SO₂ can play an analogous role as NO in accelerating effective heterogeneous oxidation rates. Broadly, this study is aimed at understanding how anthropogenic gas phase emissions alter organic aerosol oxidation pathways. Shown in Figure 1 is a simplified reaction mechanism for the reaction of saturated organic molecules (i.e., hydrocarbon, RH) with OH. The reaction begins at the aerosol surface by a reactive collision of OH (Figure 1: R1), which abstracts a hydrogen atom from RH to form an alkyl radical (R) and water. This alkyl radical rapidly converts to a peroxy radical (RO₂) by reaction with O₂ (Figure 1: R2). In the absence of both HO2 and NO, RO2 undergoes self-reactions (with other RO₂) leading to the formation of stable products (ketone or alcohol, Figure 1: R4) or alkoxy radicals (RO, Figure 1 R3). The heterogeneous reaction rate is quantified as a reaction probability or reactive uptake coefficient (γ) and reflects the fraction of OH surface collisions that produce a reaction. Measuring the gas phase loss of OH to the aerosol surface yields an uptake coefficient (γ_{OH}) that is by definition ≤1 since the maximum rate is limited by the OHsurface collision frequency. Alternatively, the heterogeneous reaction can be measured via the decay of RH to obtain an effective uptake coefficient ($\gamma_{\rm eff}$). Since $\gamma_{\rm eff}$ is sensitive to all reaction pathways that might consume RH (in addition to OH), effective uptake coefficients can in fact be larger than 1 in the presence of secondary radical chain chemistry. For example, RO (Figure 1: R5) can abstract H atoms from an organic molecule leading to an additional loss channel for RH. Received: November 2, 2015 Revised: February 26, 2016 Accepted: March 8, 2016 Published: March 8, 2016 [†]Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States [‡]Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States Figure 1. Generalized reaction scheme for the oxidation of saturated hydrocarbons by OH in the presence of SO_2 . Sulfur dioxide (SO₂) is a major anthropogenic pollutant with global emission rates of 65–90 Tg yr^{-1,8} In the U.S., SO₂ is emitted by fossil fuel combustion at power plants (e.g., coal) and industrial facilities, by the oxidation of organic materials in soils, volcanic eruptions, and biomass burning. While nitric oxide (NO) is readily oxidized in both the gas ($k = 8 \times 10^{-12}$ cm³ molecules⁻¹ s⁻¹) and condensed ($k = 5 \times 10^{-12}$ cm³ molecules⁻¹ s⁻¹) phases by RO₂, Solve the gas phase reaction SO₂ + RO₂ is observed to be much slower at room temperature, suggesting that this reaction plays only a minor role in atmospheric gas phase oxidation pathways. However, some uncertainty still remains as to the magnitude of the gas phase rate coefficient ($k \approx 10^{-14} - 10^{-17}$ cm³ molecules⁻¹ s⁻¹) and mechanism (single vs multistep) for the reaction of SO₂ with small peroxy radicals. Solve is emitted by for the reaction of SO₂ with small peroxy radicals. It was hypothesized by Ellison et al., 16 that unlike the gas phase, RO $_2$ radicals may in fact react with SO $_2$ at an aerosol surface, since this reaction is more exothermic than the analogous RO $_2$ + NO reaction. To examine how SO $_2$ impacts heterogeneous OH oxidation rates, $\gamma_{\rm eff}$ was quantified using three organic aerosol proxies: squalane (Sq, C $_{30}$ H $_{62}$, liquid), bis(2-ethylhexyl) sebacate (BES, C $_{26}$ H $_{50}$ O $_4$, liquid), and triacontane (Tri, C $_{30}$ H $_{62}$, solid). Kinetic measurements were conducted over many orders of magnitude in reaction time (37 s to hours) and reagent concentration: $\sim 2 \times 10^7 \leq {\rm [OH]} \leq \sim 1 \times 10^{10}$ molec·cm $^{-3}$, 40 ppb $\leq {\rm [SO}_2] \leq 2.3$ ppm. #### EXPERIMENTAL SECTION Organic aerosol is formed via homogeneous nucleation by passing dry N_2 over a heated reservoir (135 °C) containing the organic. As the flow cools, particles nucleate in a log-normal size distribution with a mean surface-weighted diameter of $\sim\!160\pm30$ nm. The aerosol is then introduced into an atmospheric pressure flow-reactor (FTR) or a continuous flow stirred tank reactor (CFSTR), both of which are described in detail elsewhere. 17 In both reactors, the aerosol is allowed to react with OH in 10% O_2 in both the presence and absence of SO_2 (Praxair, 45.8 ppm diluted in N_2) at a relative humidity of 30%. In the FTR, O_3 (the OH precursor) is directly introduced into the reactor and then photolyzed using 254 nm lamps (no 185 nm present in the FTR) to produce $O(^1D)$, which reacts with water vapor to form OH. In the CFSTR, OH radicals are formed by the 254 nm photolysis of O_3 , which unlike the FTR, is generated in situ. This is done using a 230 mm long Hg pen ray lamp (UVP), whose length is covered by a type 219 quartz sleeve, which eliminates 185 nm radiation. 1-2 mm of the lamp length is left uncovered allowing a small fraction of 185 nm light to photolyze O_2 to make O_3 inside the reactor. Once produced, O_3 is photolyzed by the main 254 nm output of the lamp. For select CFSTR experiments, black lights (\sim 350 nm) were used to generate OH radicals from H_2O_2 instead of O_3 . These experiments were used to check for possible photochemistry at 185 and/or 254 nm as well as unwanted side reactions with O_3 (the OH precursor). As detailed below, we observed no evidence that photochemistry at either 185 or 254 nm or side reactions involving O_3 are responsible for the results reported here. The particle size distributions (before and after reaction) were measured using a scanning mobility particle sizer (TSI, Inc.). The chemical composition of the aerosol was measured using a homebuilt tunable vacuum ultraviolet photoionization aerosol mass spectrometer (VUV-AMS), described previously. The photoionization energy used in the majority of experiments is 10.2 eV produced by the Chemical Dynamics Beamline (9.0.2) at the Advanced Light Source located in Berkeley CA. A portion of the flow exiting the reactor is filtered and sampled by a gas chromatograph with a flame ionization detector (SRI Instruments). The gas chromatograph was used to measure one of three possible gas-phase tracers (Praxair, 4.99 ppm hexane in N_2 , 8 ppm hexanal in N_2 , 5 ppm 2-methyl-2-butene in N_2) for determining OH exposure using a mixed phase relative rate method. After dilution, the final tracer concentration in the reactors is between 300 and 500 ppb. **Kinetic Analysis.** Heterogeneous kinetics are measured by monitoring the reactive decay of the parent ion in the VUV photoionization aerosol mass spectrum of Sq, BES, or Tri as a function of OH exposure in the flow-tube reactor. In the CFSTR, the decay of the parent ion is measured as a function of reaction time, as described previously. In the flow tube reactor, an exponential fit to the parent decay, as shown for BES in Figure 2, is used to determine an effective heterogeneous rate constant (k_{eff}) . This rate constant is then used to compute an effective uptake coefficient (γ_{eff}) : $$\gamma_{\rm eff} = \frac{2 \cdot k_{\rm eff} \cdot D_{\rm surf} \cdot \rho_0 \cdot N_{\rm a}}{\overline{c} \cdot 3 \cdot M} \tag{1}$$ **Figure 2.** Reactive decay of BES as a function of OH exposure with (\bigcirc) and without (\bullet) SO₂. Table 1. Reaction Scheme and Rate Constants for Kinetic Simulations | no. | reaction ^a | $k \text{ (cm}^3 \text{ molecules}^{-1} \text{ s}^{-1})$ unless otherwise noted | comment/ref | |-----|---------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------| | R1 | $RH(n) + OH \rightarrow R(n) + H_2O(n = 0 - 4)$ | | ь | | R2 | $R(n) + O_2 \rightarrow ROO(n)(n = 0 - 4)$ | 6.23×10^6 | 24 ^c | | R3 | $2ROO(n) \rightarrow 2RO(n)$ | 1.00×10^{-16} | 24 | | R4 | $ROO(n) + ROO(m) \rightarrow RH(n+1) + RH(m+1)(n, m = 0 - 4)$ | 4.00×10^{-15} | 24 | | R5 | $RH + RO(n) \rightarrow R(n+1) + R(n)$ | 1.66×10^{-15} | 24 | | R6 | $ROO(n) + SO_2 \rightarrow RO(n) + SO_3$ | 2.10×10^{-13} | d | | R7a | $ROO(n) + SO_2 \rightarrow RO_2SO_2$ | 1.1×10^{-13} | e | | R7b | $RO_2SO_2 \rightarrow ROO(n) + SO_2$ | 24 s^{-1} | 15 | | R7c | $RO_2SO_2 + O_2 \leftrightarrow RO_2SO_2O_2$ | see^f | 15 ^f | | R7d | $RO_2SO_2O_2 + ROO(n) \rightarrow RO(n) + RO_2SO_2O$ | 3.3×10^{-13} | 15 | | R7e | $RO_2SO_2O \rightarrow ROO(n) + SO_3$ | 10 s^{-1} | 32 | "A reaction diagram of this table is shown in Schematic 1. The letters n and m denote the number of oxygenated functional groups added to the squalane carbon backbone to form ketones or alcohols. ^bTreated as pseudo first order where the average [OH] varies depending on experiment and k is from the experiment without added SO₂. Squalane for example has a k[OH] = 0.122 where k is 1.39×10^{-12} cm³ molecules $^{-1}$ s⁻¹ ($\gamma = 0.27$, d = $^{-1}$ 162 nm) and $[OH]_{avg} = 9.5 \times 10^{10}$ molecules cm⁻³. ¹⁷ ^cTreated as pseudo first order where $[O_2] = 10\%$, $k = 2.5 \times 10^{-12}$ cm³ molecules $^{-1}$ s⁻¹ and the unit less Henry's law constant is 0.18. ^dThe RO₂ + SO₂ rate constant of 2.1×10^{-13} cm³ molecules $^{-1}$ s⁻¹ was determined by varying the pseudo first order rate constant ($k[SO_2]$) in order to best replicate the experimental data. The SO₂ concentration in the particle phase computed using the unit-less Henry's law constant, which is 164 ± 11 , ²⁹ and the SO₂ concentration in the reactor. ^eThe RO₂ + SO₂ rate constant of 1.1×10^{-13} cm³ molecules $^{-1}$ s⁻¹ was determined by varying the pseudo first order rate constant ($k[SO_2]$) in order to best replicate the experimental data. ^fFrom Kan et al.: ¹⁵ $k_{forward}$ [O₂]/ $k_{backward}$ = 13 where [O₂] is the current experimental value of 10%. where $D_{\rm surf}$ is the measured mean surface-weighted particle diameter, ρ_0 is density, $N_{\rm a}$ is Avogadro's number, \overline{c} is the mean speed of gas-phase OH, and M is the molecular weight. The analysis of the CFSTR data to obtain $k_{\rm eff}$ follows the procedure described in detail by Che et al. ¹⁷ Figure 2 shows an example of the normalized decay of BES aerosol versus OH exposure. In the presence of 2.3 ppm of SO $_2$, the decay of BES is observed to be much more rapid than the decay measured without SO $_2$. In the presence of 2.3 ppm of SO $_2$, $\gamma_{\rm eff}$ is computed to be 1.2 \pm 0.18 compared with 0.53 \pm 0.12 without SO $_2$. $\gamma_{\rm eff} > 1$ shows that the reaction is 20% more rapid than the OH-aerosol collision frequency, providing clear evidence for particle-phase secondary chain chemistry first hypothesized by Ellison et al. 16 A kinetic model of the data was formulated in Kinetiscope, an open access software package ¹⁹ which uses stochastic algorithms for kinetic simulations. The reactions used in the model are illustrated in Figure 1 and shown in Table 1. Additional model details can be found in Section S1 of the Supporting Information (S1). # ■ RESULTS AND DISCUSSION Figure 3a–c shows γ_{eff} as a function of $[SO_2]$ for Sq, BES, and Tri at $[OH]_{avg}=10^8$ and 10^{10} molec·cm⁻³. γ_{eff} is observed to increase with increasing $[SO_2]$, which is more pronounced at the lower OH concentration. For example, both Sq and BES exhibit γ_{eff} in excess of 1 at $[SO_2]=\sim$ 200 ppb and $[OH]=10^8$ molec·cm⁻³. This is in contrast with $[OH]_{avg}=10^{10}$ molec·cm⁻³ where γ_{eff} is observed to be less that one for all $[SO_2]$ except 2.3 ppm ($\gamma_{eff}>1$). At all [OH], the solid Tri particles exhibit a similar trend as the liquid particles, although the overall increase in γ_{eff} is much more gradual presumably due to mass transfer limitations in solid particles. It is clear from Figure 3 that in addition to SO_2 , the absolute OH concentration plays a significant role in determining the magnitude of $\gamma_{\rm eff}$. Shown in Figure 4a–c, are measurements of $\gamma_{\rm eff}$ **Figure 3.** $\gamma_{\rm eff}$ as a function of [SO₂] for (a) Sq, (b) BES, and (c) Tri. at [OH]_{avg} = 10^{10} molec·cm⁻³ (O) and 10^{8} molec·cm⁻³ (\blacksquare). Model predictions: (solid line) single step model (R6) and (dashed line) multistep model (R7a–e) from Kan et al. ¹⁵ Arrow indicates the value for $\gamma_{\rm eff}$ without SO₂ (OH only). vs [OH] at [SO₂] = 84 \pm 22 ppb. As [OH] decreases from 10¹⁰ to 10⁷ molec·cm⁻³ there is a substantial increase in γ_{eff} . The **Environmental Science & Technology** Figure 4. $\gamma_{\rm eff}$ as a function of [OH] with [SO₂] = 84 ± 22 ppb (red, \bullet) and without (O) for: (a) Sq, (b) BES, and (c) Tri. The (blue, \blacktriangle) shows experiments conducted using black lights and H₂O₂ as the OH precursor. Model predictions: (solid line) single step model (R6) and (dashed line) multistep model (R7a–e) from Kan et al. ¹⁵ Error bars represent ±1 SE (standard error) propagated from the standard errors of k_{Hex} k_{eff} , and particle diameter. functional form of $\gamma_{\rm eff}$ vs [OH] in the presence of SO₂ is nearly identical to that observed in our previous NO study, suggesting similar chain propagation mechanisms. At [OH] = 2×10^7 molec·cm⁻³ in the presence of SO₂, $\gamma_{\rm eff}$ for Sq and BES is 1.8 and 3.3, respectively. These values are ~5 times larger than at [OH] = 10^{10} molec·cm⁻³. For comparison, Figure 4 shows measurements conducted in the absence of SO₂ (labeled OH only), which do not exhibit a strong dependence on [OH]. Also shown in Figure 4a, b are CFSTR measurements conducted using black lights ($\lambda \approx 350~\text{nm}$) and H_2O_2 as the OH precursor. The values for γ_{eff} determined under these condition, are identical, within experimental error, to those conducted using O₃ as the OH precursor and 255/185 nm as the photolysis source. These results show that photochemistry at 254 and/or 185 nm and side reactions with O₃ (e.g., RO₂ + O₃ \rightarrow RO + 2O₂) are not responsible for the accelerated oxidation rates observed in Figures 3 and 4. Specifically, this eliminates the possibility that the chain propagation reactions originate from the 185 nm photolysis of SO₂ to form highly reactive SO radicals and O atoms. During the reaction with SO_2 present, a new particle distribution was observed. These new particles were identified by long path FTIR to be H_2SO_4 ; produced via the following reactions:²² $$SO_2 + OH + M \rightarrow SO_2 OH + M$$ (2) $$SO_2^{\bullet}OH + O_2 \rightarrow SO_3 + HO_2$$ (3) $$SO_3 + H_2O + M \rightarrow H_2SO_4 + M$$ (4) Previous investigations have suggested that alcohols can react with $\rm H_2SO_4$ leading to alkyl sulfate formation. 23 Thus, the enhancement in $\gamma_{\rm eff}$ observed in Figures 3 and 4 could in principle arise from acid-catalyzed aerosol-phase reactions, since it is currently not known whether acidic aerosols could catalyze radical chain propagation chemistry. To examine this possibility, H_2SO_4 particles were coated with either Sq or BES and allowed to react with OH in the absence of SO_2 . Particles were generated by atomizing a 5 mM solution of H_2SO_4 with a mean surface diameter of 95 nm. A coating thickness (D_{OA}) of either Sq or BES was then applied by passing the aerosol through an oven containing the organic. The organic coating thickness was determined from the difference in the mean surface diameter of the particle distribution before $(D_{H_2SO_4})$ and after coating $(D_{OA+H_2SO_4})$. On the basis of the insolubility of Sq and BES in water, we assume that the organic coated H_2SO_4 particles adopt a core—shell morphology. Figure 5 shows that decay rate of Sq or BES ($k_{\rm eff}$) decreases with thicker organic coatings. $k_{\rm eff}$ is observed to decrease as 1/r Figure 5. $\gamma_{\rm eff}$ (solid symbols) and $k_{\rm eff}$ (open symbols) as a function of organic coating thickness on ${\rm H_2SO_4}$ aerosol assuming a core—shell morphology for the following: (a) Sq and (b) BES. $\gamma_{\rm eff}$ and $k_{\rm eff}$ for pure Sq (a) and BES (b) aerosol are shown as (\blacktriangle) and (\Box), respectively. Arrows delineate the respective axes. Lines show predicted 1/r dependence for $k_{\rm eff}$. All measurements were conducted in the flow-tube reactor. since the oxidation of thinner coatings proceeds more rapidly due to the larger concentration of reactant available at the surface relative to the bulk. To determine if aerosol acidity plays a role in the heterogeneous oxidation, $\gamma_{\rm eff}$ is computed from $k_{\rm eff}$ using eq 1 as shown in Figure 5. $\gamma_{\rm eff}$ is observed to be, within error, identical to that of pure Sq or BES and independent of coating thickness, providing evidence that H_2SO_4 formed in the reaction is not contributing to the accelerated chemistry observed in Figures 3 and 4. Another possible source for the enhanced oxidation rate observed in Figures 3 and 4 is reaction of the triplet excited states of SO₂, which have been known to oxidize gas-phase alkanes in the atmosphere. The formation of triplet excited states begins with the absorption of UV light by SO_2 : $$SO_2 + h\nu \rightarrow^1 SO_2^* \xrightarrow{ISC} {}^3SO_2^*$$ (5) $${}^{3}\text{SO}_{2}^{*} + \text{O}_{2} \rightarrow \text{O}_{2}^{*} + \text{SO}_{2}$$ (6) $${}^{3}\text{SO}_{2}^{*} + \text{RH} \rightarrow \text{R}^{\bullet} + \text{HSO}_{2}$$ (7) where ¹SO₂* is the short-lived singlet excited state of SO₂ and ISC represents intersystem crossing. As illustrated by eq 7, ³SO₂* can abstract a hydrogen from RH producing an alkyl radical (R), thus initiating a free radical chain. To evaluate the possibility that ${}^3\mathrm{SO}_2{}^*$ could be reacting with our model compounds, Sq particles in our FTR were illuminated with 254 nm light and the parent ion signal was monitored as a function of [SO₂]. These measurements were conducted without the OH precursor added to the reactor (Figure S3). No statistically significant difference in the Sq ion signal was observed with increasing concentrations of SO₂. Equation 6 shows that ${}^3SO_2^*$ and ${}^1O_2^*$ are intricately tied since ground state oxygen is typically the largest sink for triplet excited states. On the basis of these measurements, we observe no experimental evidence that reactions of either ${}^3SO_2^*$ or ${}^1O_2^*$ contribute to the enhanced heterogeneous oxidation rates observed in Figures 3 Since no evidence was observed that H₂SO₄ or the triplet excited states of SO₂ (³SO₂*) play any role in the accelerated reaction rates observed in Figures 3 and 4, we developed a kinetic model, which assumes the observed enhancement of $\gamma_{\rm eff}$ originates from free radical chain propagation chemistry. Two models are developed to explore differing assumptions regarding the mechanism of the RO₂ + SO₂ reaction, which previously in the gas phase has been considered to proceed either in a single step or via the formation of adducts in multiple steps. 15 First, we developed a kinetic model (R1-R6), which assumes that the SO2 + RO₂ reaction occurs in a single step to produce a RO radical or potentially organic sulfates. This reaction scheme is exactly analogous to the mechanism recently reported by us for heterogeneous reactions of OH with OA in the presence of NO.⁶ The rate coefficients in the model are from previous literature and are shown in Table 1.^{6,15,24,25} The branching ratio for the RO₂ self-reaction (R4) and (R3) to form either a carbonyl-alcohol pair or two RO are fixed at 90:10, respectively, and are based upon a previous study. ²⁶ As shown recently in the gas phase by Crounse et al., ²⁷ hydroperoxides (ROOH) could be formed at low [OH] via a RO2 auto-oxidation mechanism. Although, ROOH species were not detected in the aerosol mass spectrum, they could, if formed, be photolyzed in the reactor to form RO and OH, which could propagate a chain reaction. We tested this possibility in our model using rate constants reported by Crounse et al.²⁷ over a range of realistic photolysis rate constants for ROOH (7 \times 10⁻⁵ s⁻¹ to 10⁻² s⁻¹). Including this pathway in the model produces results that were indistinguishable from those when this reaction is neglected. Thus, under our experimental conditions the dominate sink for RO2 radicals appear to be via reactions with either RO_2 or SO_2 . Monodisperse aerosol size measurements, in which the surface-to-volume ratio of the particles was varied (Figure S4), show that the $RO_2 + SO_2$ reaction occurs within the interior of the aerosol and not at its surface. Therefore, in the model the [SO₂] in the aerosol phase is fixed by a unit-less Henry's law constant of 164 ± 11, consistent with previous measurements.^{28,29} The only adjustable parameter in the single step model is the $RO_2 + SO_2$ rate constant (R6), which leads to either RO or an organic sulfate. The formation of an organic sulfate is a chain termination product, which would not lead to an overall increase in heterogeneous oxidation rate. We observed no evidence of the formation of organic sulfates in our VUV photoionization aerosol mass spectra or in additional measurements using a softer ionization technique (DART-MS) as well as long-path FTIR. Furthermore, we were not able to identify any peaks in the mass spectrum originating from dissociative photoionization of organic sulfates (e.g., elimination of H_2SO_4). Thus, it appears that the $RO_2 + SO_2$ reaction produces exclusively RO radicals. This is also consistent with our recent results that found no evidence for particle phase alkyl nitrate formation from the RO_2 + NO reaction. Thus, in the model only the RO₂ + SO₂ rate constant was varied to replicate all of the results shown in Figures 3 and 4. Shown as solid lines in Figures 3 and 4, the model shows reasonable agreement with the experimental results using a RO₂ + SO₂ rate constant of (2.1 \pm $(0.4) \times 10^{-13}$ cm³ molec. For reference, this rate constant is 30 times slower than the value obtained for the model of the aerosol phase RO₂ + NO reaction (i.e., 6.5×10^{-12} cm³ molec.⁻¹ s⁻¹). Tri particles were not modeled here, since to accurately describe heterogeneous reactions in solid particles requires explicit treatment of diffusion pathways in a spatially resolved reaction-diffusion model. The particle-phase RO₂ + SO₂ rate constant used to replicate experiment is 4 orders of magnitude larger than the value obtained for the gas-phase (~10⁻¹⁷ cm³ molec.⁻¹ s⁻¹).¹⁴ This large increase in the particle-phase rate constant is unexpected since energy barriers of elementary reactions should be similar to those in the gas-phase. Therefore, a multistep adduct formation mechanism for RO₂ + SO₂, proposed by Kan et al., 15 was evaluated in a second model (R1-R5, R7a-e). The multistep mechanism has a more complex dependence on $[O_2]$ and $[RO_2]$ than the single step $RO_2 + SO_2$ mechanism. In this model, R7a, the rate coefficient for the initial RO₂SO₂ adduct formation, is varied to replicate the experimental data in Figures 3 and 4. The subsequent steps (R7b-e) are fixed at the values reported in Kan et al. The model results (dashed lines in Figures 3 and 4) show good agreement with experimental results using a value of 1.1 × 10^{-13} cm³ molec.⁻¹ s⁻¹ for R7a. Even though both the single step (R6) and multistep models (R7a-e) can replicate our experimental results, the particle-phase rate constant for R7a is only 1 order of magnitude larger than the gas-phase value (1.6 \times 10⁻¹⁴ cm³ molec. T s⁻¹) reported by Kan et al. 5 for the reaction of methyl peroxy radicals with SO₂. This difference in rate coefficient for the initial adduct formation may not be that surprising given the large differences in molecular structure of the peroxy radicals (methyl vs C₃₀) and environments (i.e., gas vs solvent cage in the organic aerosol phase.) Thus, it seems likely that the more complex multistep reaction mechanism is a more reasonable description of the chemistry occurring inside the aerosol studied here. The experimental and model results indicate that $\gamma_{\rm eff}$ is controlled by the competition between the $RO_2 + SO_2$ (chain propagating to form RO) and chain terminating RO₂ + RO₂ reactions. This is seen in Figure 4 in which there is a clear inverse relationship between γ_{eff} and the absolute [OH] at constant SO₂ $(84 \pm 22 \text{ ppb})$. At high [OH] $(10^8 - 10^{10} \text{ molecules cm}^{-3})$ the particle phase RO₂ concentration is also relatively high so that the loss of RO₂ is mainly by reactions with other RO₂ to form stable chain terminating products. This is further illustrated in Figure 3 in which a higher concentration of SO_2 is needed at $[OH] = 10^{10}$ molecules cm⁻³ to obtain the same γ_{eff} as observed at [OH] = 10^8 molecules cm⁻³. Lower OH concentrations $(10^6 - 10^7 \text{ molecules})$ cm⁻³) leads to a reduction in RO₂ (whose consumption rate scales as $[RO_2]^2$) thereby favoring reaction with SO_2 . The SO_2 + RO₂ reaction forms RO, which reacts with nearby molecules by H abstraction to reform R and eventually RO₂. These peroxy radicals can react again with SO₂ to generate another RO radical thereby increasing $\gamma_{\rm eff}$ by radical chain propagation. The coproduct of the RO₂ + SO₂ reaction is SO₃ (Figure 1). Subsequent reactions of SO₃ are not explicitly included in the model, but we expect that the dominant sink for this species will be via reaction with H₂O to form H₂SO₄ in the particle (see eq 4). As shown in Figure 5, there is no evidence that the formation of this additional H₂SO₄ contributes to the accelerated reaction kinetics. The model, constrained by experiment, can be extrapolated to global average atmospheric OH conditions $(2 \times 10^6 \text{ molecules})$ cm⁻³) as shown in Figure 4. At low [OH] γ_{eff} of BES and Sq are predicted to be 10.6 and 3.4, respectively. These heterogeneous oxidation rates are 10-20 times faster than with OH alone. It should be noted that these results and model interpretation are consistent with accelerated heterogeneous reactions in the presence of NO recently reported by us. In that case, the chain propagation step is the same; the reaction of RO₂ with NO to form alkoxy radicals. In the NO study, free radical chain reactions accelerated oxidation rates for Sq and BES by 10 to 50 times at $[OH] = 2 \times 10^6$ molecules cm⁻³ and $[NO] = \sim 80$ ppb. ⁷ Although the increase in the rate of heterogeneous oxidation in the presence of SO₂ is more modest (due to the smaller rate coefficient for RO₂ + SO₂ step) compared to NO, together these results illustrate that anthropogenic gas phase emissions of SO₂ and NO can significantly accelerate the heterogeneous aging of organic aerosols in the atmosphere. To evaluate the significance of the $SO_2 + RO_2$ reaction in the atmosphere, the model was run using SO_2 concentrations reported by the Environment Protection Agency. Figure 6 shows predicted $\gamma_{\rm eff}$ (Sq and BES) as a function of SO_2 (10–60 ppb) for daytime ground levels of OH ranging from (1–8) × 10 molecules cm⁻³. As expected, $\gamma_{\rm eff}$ increases with higher SO_2 concentrations and is inversely proportional to OH concentration, in agreement with the measured trends presented in Figures 3 and 4. However, even at much lower SO_2 concentrations (20 ppb) $\gamma_{\rm eff}$ remains larger than 1 for both Sq and BES. By comparing the kinetic lifetimes of gas and particle phase alkanes, the relative importance of the $\mathrm{RO}_2+\mathrm{SO}_2$ reaction can be estimated. The heterogeneous lifetime of an alkane (i.e., squalane)¹⁷ in a 150 nm diameter particle with a γ_{eff} of 0.3 in a remote region (absence of SO_2), is 4 days, assuming a global mean $[\mathrm{OH}]$ of 2×10^6 molec·cm³. The kinetic lifetime of an analogous gas-phase alkane (e.g., dodecane, $\mathrm{C}_{12}\mathrm{H}_{26}$) is 11 h ($k=1.32\times10^{-11}$ cm³ molecules⁻¹ s⁻¹). In the presence of SO_2 (10 to 60 ppb), the chain propagation mechanism accelerates heterogeneous oxidation reaction rates by 2 to 9 times the OH collision frequency (Figure 6). Thus, we predict in polluted environments where SO_2 concentrations range from 10 to 60 ppb and $[\mathrm{OH}]=2\times10^6$ molec·cm³, the heterogeneous lifetime ranges from 9 to 43 h; time scales that are comparable to the gasphase lifetime of dodecane. These results also suggest that Figure 6. Model predictions of γ_{eff} as a function of [OH] for several concentrations of [SO₂]. regional fluctuations in gas phase SO_2 concentrations will lead to relatively large changes in heterogeneous oxidation rates during the lifetime of the aerosol in the atmosphere. From Figure 6, we expect that heterogeneous oxidation rates will be most sensitive to $[SO_2]$ at low $[OH] < 2 \times 10^6$ molec·cm⁻³. # ATMOSPHERIC IMPLICATIONS This work and our previous⁶ study reveal how anthropogenic SO₂ and NO emissions can significantly accelerate heterogeneous OH oxidation through radical chain propagation reactions. This propagation chemistry leads to much shorter time scales for heterogeneous transformations of particle phase organics than previously expected and its importance should be evaluated in chemical transport models. Although these experiments are for simple single component OA proxies, the SO₂ + RO₂ mechanism could be general and important for oxidative aging of primary aerosol emissions (e.g., diesel emissions).³¹ However, it remains unclear how this mechanism might transform more highly oxygenated secondary organic aerosol constituents, since chemically activated alkoxy radicals would be the products of the $\mathrm{RO_2}$ + $\mathrm{SO_2}$ reaction. Unimolecular decomposition of activated alkoxy radicals 26 can effectively compete with bimolecular H abstraction reactions, thus enhancing aerosol fragmentations reactions in the presence of SO₂ and NO. Future work is needed to evaluate the importance of C—C scission reactions in the presence of SO₂ and NO as well as the potential importance of free radical cycling in more dilute aqueous solutions and semisolids in order to better understand the role that molecular structure and particle phase have on chain cycling chemistry. Finally, these results suggest that further work is needed to understand whether aerosol phase peroxy radicals are important sinks for NO or SO₂. In particular, it is unclear whether the oxidation of SO₂ by RO₂ inside OA could be an important mechanism for sulfate formation. #### ASSOCIATED CONTENT ### **S** Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b05369. A detailed discussion of stochastic modeling and Figures S1–S4 (PDF) #### AUTHOR INFORMATION ## **Corresponding Author** *E-mail: krwilson@lbl.gov (K.R.W.). #### Notes The authors declare no competing financial interest. #### ACKNOWLEDGMENTS This work and the Advanced Light Source were supported by the Director, Office of Energy Research, Office of Basic Energy Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. K.R.W. was supported by the Department of Energy, Office of Science Early Career Research Program. We thank Dr. Frances Houle and Dr. Aaron Wiegel for technical support on the model and Mr. Bruce Rude for technical support on the instrument. We acknowledge Dr. Michael Ward for work on initial experiments. #### REFERENCES - (1) Zhang, Q.; Jimenez, J. L.; Canagaratna, M. R.; Allan, J. D.; Coe, H.; Ulbrich, I.; Alfarra, M. R.; Takami, A.; Middlebrook, A. M.; Sun, Y. L.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. *Geophys. Res. Lett.* **2007**, 34 (13), L13801. - (2) Murphy, D. M.; Cziczo, D. J.; Froyd, K. D.; Hudson, P. K.; Matthew, B. M.; Middlebrook, A. M.; Peltier, R. E.; Sullivan, A.; Thomson, D. S.; Weber, R. J. Single-particle mass spectrometry of tropospheric aerosol particles. *J. Geophys. Res.-Atmos* **2006**, *111* (D23), D23S32. - (3) Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M. IPCC, 2013: Climate change 2013: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2013. - (4) Pope, C. A.; Ezzati, M.; Dockery, D. W. Fine-Particulate Air Pollution and Life Expectancy in the United States. *N. Engl. J. Med.* **2009**, 360 (4), 376–386. - (5) Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; et al. Evolution of Organic Aerosols in the Atmosphere. *Science* **2009**, 326 (5959), 1525–1529. - (6) Richards-Henderson, N. K.; Goldstein, A. H.; Wilson, K. R. Large Enhancement in the Heterogeneous Oxidation Rate of Organic Aerosols by Hydroxyl Radicals in the Presence of Nitric Oxide. *J. Phys. Chem. Lett.* **2015**, 6 (22), 4451–4455. - (7) Liu, C.-L.; Smith, J. D.; Che, D. L.; Ahmed, M.; Leone, S. R.; Wilson, K. R. The direct observation of secondary radical chain chemistry in the heterogeneous reaction of chlorine atoms with submicron squalane droplets. *Phys. Chem. Chem. Phys.* **2011**, 13 (19), 8993–9007. - (8) Levin, Z.; Cotton, W. R. Aerosol Pollution Impact on Precipitation: A Scientific Review; Springer: New York, 2009. - (9) http://www3.epa.gov/airquality/sulfurdioxide/. - (10) Goldstein, S.; Lind, J.; Merenyi, G. Reaction of Organic Peroxyl Radicals with ●NO2 and ●NO in Aqueous Solution: Intermediacy of Organic Peroxynitrate and Peroxynitrite Species. *J. Phys. Chem. A* **2004**, *108* (10), 1719−1725. - (11) Abbatt, J.; Oldridge, N.; Symington, A.; Chukalovskiy, V.; McWhinney, R. D.; Sjostedt, S.; Cox, R. A. Release of Gas-Phase Halogens by Photolytic Generation of OH in Frozen Halide-Nitrate Solutions: An Active Halogen Formation Mechanism? *J. Phys. Chem. A* **2010**, 23 (114), 6527–6533. - (12) Eberhard, J.; Howard, C. J. Rate Coefficients for the Reactions of Some C3 to C5 Hydrocarbon Peroxy Radicals with NO. *J. Phys. Chem. A* **1997**, *101* (18), 3360–3366. - (13) Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Organic peroxy radicals: Kinetics, spectroscopy and tropospheric chemistry. *Atmos. Environ., Part A* **1992**, *26* (10), 1805–1961. - (14) Sander, S. P.; Watson, R. T. A kinetics study of the reaction of SO2 with CH3O2. *Chem. Phys. Lett.* **1981**, *77* (3), 473–475. - (15) Kan, C. S.; Calvert, J. G.; Shaw, J. H. Oxidation of sulfur dioxide by methylperoxy radicals. *J. Phys. Chem.* **1981**, 85 (9), 1126–1132. - (16) Ellison, G. B.; Tuck, A. F.; Vaida, V. Atmospheric processing of organic aerosols. *J. Geophys. Res.: Atmos* 1999, 104 (D9), 11633–11641. - (17) Che, D. L.; Smith, J. D.; Leone, S. R.; Ahmed, M.; Wilson, K. R. Quantifying the reactive uptake of OH by organic aerosols in a continuous flow stirred tank reactor. *Phys. Chem. Chem. Phys.* **2009**, *11* (36), 7885–7895. - (18) Hearn, J. D.; Smith, G. D. A mixed-phase relative rates technique for measuring aerosol reaction kinetics. *Geophys. Res. Lett.* **2006**, 33 (17), L17805 - (19) Hinsberg, W. D.; Houle, F. A. Kinetiscope a stochastic kinetics simulator. available under a no-cost license from www.hinsberg.net/kinetiscope, 2015. - (20) Renbaum, L. H.; Smith, G. D. The importance of phase in the radical-initiated oxidation of model organic aerosols: reactions of solid and liquid brassidic acid particles. *Phys. Chem. Chem. Phys.* **2009**, *11* (14), 2441–2451. - (21) Ruehl, C. R.; Nah, T.; Isaacman, G.; Worton, D. R.; Chan, A. W. H.; Kolesar, K. R.; Cappa, C. D.; Goldstein, A. H.; Wilson, K. R. The Influence of Molecular Structure and Aerosol Phase on the Heterogeneous Oxidation of Normal and Branched Alkanes by OH. *J. Phys. Chem. A* **2013**, *117* (19), 3990–4000. - (22) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I gas phase reactions of Ox, HOx, NOx and SOx species. *Atmos. Chem. Phys.* **2004**, *4* (6), 1461–1738. - (23) Levitt, N. P.; Zhao, J.; Zhang, R. Heterogeneous chemistry of butanol and decanol with sulfuric acid: Implications for secondary organic aerosol formation. *J. Phys. Chem. A* **2006**, *110* (49), 13215–13220. - (24) Denisov, E. T.; Afanas'ev, I. B. Oxidation and Antioxidants in Organic Chemistry and Biology; Taylor & Frances: Oxford, 2005. - (25) Houle, F. A.; Hinsberg, W. D.; Wilson, K. R. Oxidation of a model alkane aerosol by OH radical: the emergent nature of reactive uptake. *Phys. Chem. Chem. Phys.* **2015**, *17* (6), 4412–4423. - (26) Wiegel, A. A.; Wilson, K. R.; Hinsberg, W. D.; Houle, F. A. Stochastic methods for aerosol chemistry: a compact molecular description of functionalization and fragmentation in the heterogeneous oxidation of squalane aerosol by OH radicals. *Phys. Chem. Chem. Phys.* **2015**, *17* (6), 4398–4411. - (27) Crounse, J. D.; Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.; Wennberg, P. O. Autoxidation of Organic Compounds in the Atmosphere. *J. Phys. Chem. Lett.* **2013**, 4 (20), 3513–3520. - (28) Renon, H.; Lenoir, J. Y.; Renault, P. Gas chromatographic determination of Henry's constants of 12 gases in 19 solvents. *J. Chem. Eng. Data* 1971, 16 (3), 340–342. - (29) Benoit, R. L.; Milanova, E. Vapour pressure and calorimetric data for the solution of sulfur dioxide in aprotic solvents. *Can. J. Chem.* **1979**, 57 (11), 1319–1323. - (30) http://www.epa.gov/airtrends/sulfur.html. - (31) Worton, D. R.; Isaacman, G.; Gentner, D. R.; Dallmann, T. R.; Chan, A. W. H.; Ruehl, C.; Kirchstetter, T. W.; Wilson, K. R.; Harley, R. A.; Goldstein, A. H. Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles. *Environ. Sci. Technol.* **2014**, 48 (7), 3698–3706. (32) Cocks, A. T.; Fernando, R. P.; Fletcher, I. S. The gas-phase reaction of the methylperoxy radical with sulphur dioxide. *Atmos. Environ.* **1986**, 20 (12), 2359–2366.